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Active feedback control was applied to suppress oscillations in thermocapillary
convection in a half-zone liquid bridge. The experiment is on a unit-aspect-ratio liquid
bridge where the most unstable azimuthal mode has wavenumber 2 when control
is absent. Active control was realized by locally modifying the surface temperature
using the local temperature measured at different locations fed back through a simple
control law. The performance of the control process was quantified by analysing local
temperature signals, and the flow structure was simultaneously identified by flow
visualization. With optimal placement of sensors and heaters, proportional control
can raise the critical Marangoni number by more than 40%. The amplitude of the
oscillation can be suppressed to less than 30% of the initial value for a wide range
of Marangoni number, up to 90% of the critical value. The proportional control was
tested for a period-doubling state and it stabilized the oscillation to a periodic state.
Weakly nonlinear control was applied by adding a cubic term to the control law to
improve the performance of the control and alter the bifurcation characteristics.

1. Introduction
Oscillatory thermocapillary convection, often blamed for the periodic variations in

composition (striations) in the production of single crystals using the floating-zone
method (Chang & Wilcox 1976), has been studied intensively in recent decades. In
the floating-zone method, by slowly pulling a raw material through a ring heater,
the small zone near the heater is melted and re-solidified as a single crystal. This
containerless processing has advantages in increasing the purity of the crystal. To
further increase purity, space processing has been proposed to avoid the influence of
thermal convection. However, in micro-gravity conditions, oscillatory thermocapillary
convection becomes significant and causes detrimental striations in the chemical com-
position of the finished crystal. Since the first experimental observation of the three-
dimensional time-dependent state in thermocapillary convection by Schwabe &
Scharmann (1979) and Chun & Wuest (1979), this problem has been a prime candidate
for space-based projects. In addition, this is a rich fundamental physical problem with
nonlinear dynamics which can lead the flow to chaotic states.

Many studies have been done on a simplified model, the half-zone model, which
essentially models half of the floating zone. In a half-zone, a liquid drop is held
between two coaxial rods maintained at different temperatures to impose an axial
temperature gradient on the free surface. Preisser, Schwabe & Scharmann (1983)
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found experimentally that the most unstable azimuthal wavenumber and frequency
are determined by the aspect ratio of the liquid bridge. This was followed by
the work of Velten, Schwabe & Scharmann (1991) where the onset of instability
was experimentally measured at different high Prandtl numbers (Pr). The stability
characteristics were studied using linear stability theory by Neitzel et al. (1993) and
Kuhlmann & Rath (1993). Levenstam & Amberg (1995) carried out a numerical
simulation and determined that the mechanism of the onset of the oscillatory flow
for a low-Pr liquid is a purely hydrodynamic instability very similar to the instability
of a vortex ring. Wanschura et al. (1995) examined the dependence of the onset
of the instability on Pr by a linear stability analysis and drew similar conclusions.
For high-Pr liquids, the instability was attributed to heat transport coupled with the
Marangoni effect. In the intermediate regime (Pr = 0.07–0.84), Levenstam, Amberg &
Winkler (2001) carried out a numerical simulation and linear stability analysis and
showed that the thermocapillary forces counteract the hydrodynamical instability,
and thus the axisymmetric base state is much more stable than at high or low Pr .
In connection with bifurcation theory, Leypoldt, Kuhlmann & Rath (2000) have
described a supercritical Hopf bifurcation by means of numerical simulation. Further
increase in the temperature gradient will result in the transition to a chaotic state
Ueno, Tanaka & Kawamura (2003). Recently, some interesting flow patterns have
been observed in the transitional regime by Schwabe, Hintz & Frank (1996) and
Kawamura, Ueno & Ishikawa (2002). On seeding the flow with particles, three-
dimensional structures were revealed by particles accumulating along a single closed
orbit.

One of the first works to utilize feedback control to stabilize thermal convection
was by Wang, Singer & Bau (1992) who applied proportional control in a thermal
convection loop, and managed to suppress the chaotic behaviour. Later, Yuen &
Bau (1996) succeeded in changing a subcritical Hopf bifurcation to a supercritical
bifurcation using cubic control. An attractive feature of this problem is that the
system can be described well by a set of model equations which are essentially
the celebrated Lorenz’s equations. Based on these model equations, theoretical and
numerical analyses were carried out together with experiments.

Using similar methodology, these works were followed by a series of works
on Rayleigh–Bénard convection. For two-dimensional Rayleigh–Bénard convection,
Tang & Bau (1993) theoretically demonstrated the possibility of delaying the onset of
convection by almost one order of magnitude. This was followed by the experimental
work of Howle (1997) where feedback control caused significant suppression of two-
dimensional convection in a slender box. The control method was also tested for
three-dimensional convection by Tang & Bau (1998), but the stabilization obtained
fell far short of the theoretical prediction for two-dimensional convection.

Recently, a few theoretical works have been reported on feedback control of the
transition from a no-motion state to time-independent motion in Marangoni–Bénard
convection. Linear control was applied to delay the onset of the instability by Bau
(1999). The delay of transition was confirmed by means of linear stability analysis.
Or et al. (1999) demonstrated the possibility of controlling the long-wavelength mode
by a weakly nonlinear control law. Nonlinear flow properties could be altered to
eliminate the subcritical nature of the bifurcation. A similar analysis was applied to
the finite-wavelength mode by Or & Kelly (2001), taking the buoyancy effect into
account.

With this better understanding of the phenomena, some results have been reported
on the control of oscillatory thermocapillary convection in various geometries. An
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attempt to stabilize the thermocapillary wave instability in an experiment on a
plane fluid layer was made by Benz et al. (1998). The temperature signal and phase
information sensed by thermocouples near the cold end of the layer was fed forward
to control a laser which heated the downstream fluid surface along a line. For an
annular configuration, Shiomi, Amberg & Alfredsson (2001) and Shiomi & Amberg
(2002) applied active feedback control based on a simple cancellation scheme. Using
two sensor/actuator pairs, a significant attenuation of oscillation was observed in a
range of Marangoni number (Ma), with the best performance in the weakly nonlinear
regime.

For a half-zone model, Petrov et al. (1996, 1998) attempted to stabilize the oscillation
by applying a nonlinear control algorithm using local temperature measurements close
to the free surface and modifying the temperature at different local locations with
Peltier devices. The control scheme is based on an idea of Ott, Grebogi & Yorke (1990).
They constructed a look-up table based on the system’s response to a sequence of
random perturbations. A linear control law using appropriate data sets from the look-
up table was computed. The control law was updated at every time step to adapt the
control law to the nonlinear system. Using one sensor/actuator pair, successful control
was observed at the sensor location for Ma ∼ 17750. However, infrared visualization
revealed the presence of standing waves with nodes at the feedback element and the
sensor. This was resolved by adding a second sensor/actuator pair which enables the
control to damp out waves propagating both clockwise and counterclockwise, thus
standing waves. The performance of the control was reported for only one value of
Ma ∼ 15000, where the critical value was Ma ∼ 14000. They stated that the oscillation
could not be suppressed when Ma exceeds the critical value by more than 8.5%,
mostly due to the weak response of the fluid flow to the Peltier devices, which cannot
be cooled more than a few degrees during the application of the control pulse.

In the present report, we intend to control oscillatory thermocapillary convection
in a half-zone through an active feedback control scheme. The control is based on a
simple linear feedback control law with sensors and actuators strategically positioned
based on knowledge of the dominant azimuthal mode which is determined by the
geometry of the system. In contrast with the scheme of Petrov et al. (1996, 1998), the
current method allows us to tackle the problem without constructing reference data
beforehand. It was shown by Shiomi et al. (2001) and Shiomi & Amberg (2002) in the
annular configuration that the method can stabilize the flow in a range of Maragoni
number without any cooling devices.

At this stage, we can only consider a high-Pr system where heat transport plays an
important role. Nevertheless, this is an attractive case for general flow control, since it
is a slow phenomenon with a limited number of modes active in the global instability,
and the flow can be stabilized by measuring and modifying the surface temperature,
which is usually easily accessible. Furthermore, the closed geometry makes feedback
control possible.

2. Experimental apparatus
The geometry of the half-zone model is shown in figure 1. The height and diameter

of the bridge are H = 2.5 mm and R =2.5 mm. The diameter of the bridge was kept
small enough for the thermocapillary convection to dominate the buoyancy-driven
convection. Th and Tc denote the hot and cold wall temperatures. The Marangoni
number is defined as Ma = γ�T H/αµ, where γ and �T are the absolute value
of the surface tension coefficient and Th − Tc, and µ and α are the viscosity and
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the thermal diffusivity at (Th + Tc)/2. The parameter ε measuring the increase from
the critical value of Ma is defined as ε = (Ma − Macr )/Macr , where Macr is Ma at
criticality. All measurements and actuations were done on the line (r, z) = (R, H/2);
thus hereafter among the spatial parameters only the φ-position will be denoted.
The dimensionless temperature θ(φ, t) = (T (φ, t) − T (φ))/�T is used throughout the
analysis, where T (φ) is the time average of T (φ, t).

The experiment, as described in previous reports (Kawamura et al. 2002; Ueno
et al. 2003), was set up as in figure 2. An axial temperature gradient was imposed
by heating the top rod with a wire heater tied around it. The bottom rod made of
aluminium is connected to a heat sink to play the role of the cold wall. The top
rod was made of sapphire to enable us to observe the flow field through the top end
of the bridge. The sidewall of the bottom rod was coated with a fluoride paint to
inhibit the liquid from wetting the side. The liquid is 5 cSt silicone oil which gives
Pr = 68 at 25 ◦C. The aspect ratio Ar , defined as the ratio of the radius to height of
the bridge, H/R, was 1 throughout the experiment. The ambient temperature was the
room temperature.
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For flow visualization, the liquid bridge was seeded with polystyrene particles with
diameter 17 µm and specific gravity 1.07. Two CCD cameras were set on the top and
side of the liquid bridge to capture top and side views of the structure of the con-
vection. The whole bridge was illuminated with two continuous light sources. The
view from the top was mainly used to examine the flow structure, and the one from the
side was used to observe the free-surface shape. The free surface is curved as sketched
in figure 2 where the volume of the liquid is approximately equal to the volume of
the cylinder, πR2H . To carry out quantitative analysis on control performance, it is
important to prevent the surface shape from changing due to evaporation, since this
may affect the stability properties (Hu et al. 1994). Efforts were made to keep the
liquid volume constant by adding liquid between measurements when needed.

Two sensor/heater pairs could be placed in different azimuthal locations. The
sensors and heaters utilize the technique described in Shiomi et al. (2001). Calibrated
cold wires were used as sensors. They have a U shape, where the curved bottom
is made of a platinum wire with diameter of 2.5 µm. The distance between the two
supporting prongs was 0.2mm. Sensors were placed through the surface so that
the tips of the sensors were approximately 100 µm deep. The principle is that a
constant current passes through the platinum wire and detects the resistance, which is
proportional to the temperature. The amount of current is limited so that the heating
power of the sensor does not exceed 1 µW. Since the wire is very thin, it can be palced
through the free surface without causing appreciable deformation. The control heater
is made in the same manner as the sensor, but of 10% rhodium–platinum in order
to enhance the resistivity. The heater is placed about 300 µm above the surface. The
power output from the heaters is obtained by measuring current and voltage over the
heater.

A typical experiment was carried out as follows. First, the bridge was filled with
Silicone oil mixed with polystyrene particles using a syringe until the desired surface
shape and bridge volume were achieved. Then Th was increased to a few degrees below
the critical value to drive a steady two-dimensional convection. A waiting period of
at least 15 min was allowed in order to reach a thermal equilibrium. On raising Th,
the onset of the oscillation was observed by flow visualization, and the critical value
of �T was recorded. Typical values of Th, Tc and �T at criticality were 52 ◦C, 20 ◦C
and 32 ◦C, respectively, for ambient temperature of about 20 ◦C.

When Th was changed between measurements, care was taken that the heating
ramp never exceeded 0.1 K s−1, the value confirmed in advance to have little influence
on Macr . Setting �T to a designated value, the volume ratio was checked and, if
necessary, small drops of the liquid were carefully added to the bridge with a syringe.
Whenever the drops were added during the experiment, we waited for a period of at
least 15 min. The probes were then installed, and the measurements were started after
confirming steady oscillation by the temperature signals and flow visualization.

3. Flow without control
3.1. Flow visualization

Top-view flow visualization allows us to observe the mode structure in the (r, φ)-plane.
Since the whole bridge was illuminated with continuous lighting, the views captured
illustrated the fields integrated in the z-direction. After the onset of the oscillation,
a polygonal particle-free area appears at the centre of the plane. As shown by Ueno
et al. (2003) where a flow visualization was carried out for a wide range of Ar , the
number of lines of symmetry in the visualized image indicates certain polygonal modal
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(a) t = 0 (b) t = 0.23 s

(c) t = 0.46 s (d )

Figure 3. Flow visualization of a mode-2 standing wave. (a–c) Without control.
(d) Time-independent state achieved by proportional control. ε = 0.18.

flow structures. The polygonal particle-free area indicates the radial deformation of
the vortical structure from the axisymmetric state. In the present setting of Ar =1,
the particle-free area appears to be an ellipse. Here, the number of lines of symmetry
is 2; thus the oscillation has azimuthal wavenumber of 2 (mode-2).

In the regime close to criticality, the oscillation is standing. A mode-2 standing
oscillation is shown by the sequence of pictures in figure 3(a–c). The solid and dashed
lines represent the lines of symmetry. Starting from state (a), where the ellipse is fully
elongated along the solid line, the ellipse gradually becomes circular and reaches the
axisymmetric state (b). Then the particle-free area begins to stretch along the line
normal to the initial direction of elongation until it reaches the fully elongated state
(c). The process continues in the reverse manner as (c) → (b) → (a). One period of
oscillation has a duration of about 0.91 s. Lighting is from the bottom left direction
in the pictures. Fewer particles are observed in the lower left quarter of the section
because of the uneven initial distribution of the particles. When the standing wave
is formed, the particles cannot cross the node lines, visualized as a dark line in the
radial direction where the azimuthal velocity is zero.

On increasing ε (�0.32, based on Macr = 31000 as discussed in § 3.2), the ellipse was
shown to rotate in the azimuthal direction, which indicates that the wave is travelling.
In figure 4, the flow visualization of a model 2 travelling wave is shown as the sequence
(a) → (b) → (c) which corresponds to half a period of the oscillation. The solid lines
represent the lines of symmetry. The direction of rotation was unpredictable, which
supports the symmetry of the experimental apparatus. On further increase in ε, the
ellipse narrows down to almost a line. At this stage, the dynamics is strongly nonlinear
and the oscillation has a highly three-dimensional structure. Further information on
the various flow patterns with increasing ε is available in Ueno et al. (2003).
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(a) t = 0 (b) t = 0.23 s (c) t = 0.46 s

Figure 4. Flow visualization of the mode-2 travelling wave without control for ε = 0.41.

3.2. Temperature measurements

From temperature signals at two different azimuthal positions, clockwise and
counterclockwise propagating waves can be identified. Since the oscillation is the
result of the superimposition of two waves rotating in opposite directions, the mode
n oscillation based on the fundamental frequency, θ̂ n, can be written as

θ̂ n(φ, t) =An,1(t) sin(nφ − 2πfnt + ηn,1) + An,2(t) sin(nφ + 2πfnt + ηn,2), (3.1)

where An,1 and An,2, are the amplitudes, and ηn,1 and ηn,2 are the phases of the
clockwise and counterclockwise propagating waves of mode (azimuthal wavenumber)
n, respectively, and fn denotes the critical frequency of the nth mode. Using the
experimentally accessible values,

θ̂ n(φ1, t), θ̂ n(φ2, t),
∂θ̂ n(φ1, t)

∂t
,

∂θ̂n(φ2, t)

∂t
, fn, n, (3.2)

we can compute

An,1(t), An,2(t), ηn,1, ηn,2. (3.3)

The mode number n was obtained from flow visualization, and θ̂ n was computed by
applying a band-pass filter to the frequency components around the base frequency of
the nth mode. The critical frequency of mode n, fn, was detected from the peaks of the
power spectra. This way, for multiple modes, we can identify each mode component
and analyse its spatial structure, unless their frequency bands overlap. In the present
work, An,1(t) and An,2(t) are always computed for periodic oscillations where they
are time independent, hence the notation of time dependence for these variables is
omitted hereafter.

Now we can obtain quantitative measurements on the transition from a standing
wave to a travelling wave. In figure 5, the amplitudes of the clockwise and counter-
clockwise waves are plotted for a range of ε. It can be seen that up to ε = 0.32, A2,1

and A2,2 show similar values, which indicates that the oscillation has a standing
structure. Above this limit, A2,1 becomes dominant which means that the structure
has become a travelling one.

The data for A2 = (A2
2,1 + A2

2,2)
1/2 show good agreement with a supercritical Hopf

bifurcation in the weakly nonlinear regime (Iooss & Joseph 1989). For a supercritical
Hopf bifurcation, the amplitudes of the oscillation should grow proportionally to
the square root of ε. Here, the bifurcation curve (solid line) was fitted to the data,
confirming the weakly nonlinear regime where the bifurcation theory should be
applicable. The plots falls beneath the bifurcation curve as the nonlinearity becomes
stronger, as also observed in the numerical simulation by Leypoldt et al. (2000). Note
that this is not a case where the growth of the amplitude is restricted by becoming



200 J. Shiomi, M. Kudo, I. Ueno, H. Kawamura and G. Amberg

0

1

2

3

4

5

0.2 0.4 0.6 0.8
ε

(× 10–4)

S
qu

ar
ed

 a
m

pl
it

ud
e

Figure 5. Circles: the squared amplitude of the clockwise rotating wave, A2
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Solid line: the supercritical Hopf bifurcation curve fit to selected data. Macr was determined
by flow visualization. The dotted line marks the change in the flow pattern from standing to
travelling waves observed by flow visualization.

comparable to �T , since the amplitude of a typical oscillation is about 2% of �T .
Macr (∼31000) was determined by careful observation of flow visualization, and then
confirmed to be similar to the value obtained by interpolating the bifurcation curve
down to A2 = 0.

3.3. Frequency

As numerically shown by Leypoldt et al. (2000), the nonlinear interaction of the
modes modifies the oscillation frequencies. Since the extent of the modification
should depend on the energy distribution of the two waves with opposite directions
of rotation, the frequency evolves differently depending on whether the oscillation
is standing or travelling. They showed that the critical frequency increases prop-
ortionally to ε, with different slopes depending on whether the wave is standing or
travelling. The evolution of the critical frequency of a standing wave was checked up
to high ε by generating the standing wave and extracting the frequency before the
perturbation grows large enough to become a travelling wave.

Some of these features could be confirmed experimentally as shown in figure 6,
where the change in the flow structure accompanies a change in the slope of the f2

curve. The values of f2 without control are plotted with pluses. Based on the findings
of Leypoldt et al. (2000), we identified two kinds of frequency evolutions, f SW

2 (dotted
line) and f T W

2 (dashed line), corresponding to a standing wave and a travelling wave,
respectively. Up to ε = 0.32, below which standing waves can be observed, f2 is close
to f SW

2 . The frequency decreases as the oscillation structure changes from standing to
travelling. When the wave becomes purely travelling, f2 is close to f T W

2 . Qualitatively,
the results are in a good agreement with those of Leypoldt et al. (2000), though more
data points would be required for a more accurate determination of the slopes, which
now do not intersect at ε = 0 as they should.
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Figure 7. Sketch of different sensor/heater configuration. (a) dφ = π, (b) dφ = π/2.

4. Proportional control, dφ = π

4.1. Linear control law

With unit aspect ratio, the mode-2 oscillation dominates the flow when control is
absent. This means that, at fixed radial and axial positions, θ(φ) and θ(φ + π) will be
in phase. A simple cancellation scheme can be constructed if we introduce point heat
sources as

Q(φi + dφ) = −G1θ(φi), (4.1)

where φi is the ith azimuthal sensor location and dφ is the distance between sensors
and paired heaters. Q and G1(�0) are the heater power output and proportional
control gain. First we consider dφ = π. Since applying only one sensor/heater pair
could result in a standing wave with nodes at the sensor/heater positions (Petrov et al.
1998), two sensor/heater pairs were positioned π/4 apart (φ1 = 0 and φ2 = π/4) as
shown in figure 7(a). For the mode-2 oscillation, π/4 is one quarter of a wavelength.
This means that we position the second sensor/heater pair at locations where the
wave might have had an anti-node if we had applied only one sensor/heater pair.
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dashed lines: dφ = π/2, for ε = 0.12, 0.42 and 0.62.

This configuration of probes is equivalent to the one shown in Shiomi & Amberg
(2002) to achieve the best performance among cases tested with different distances
between the sensors. Since the actuators used in the present experiment limit our
action to heating only, the actual output from the heaters is limited:

Q(φi + dφ) =

{−G1θ(φi), θ(φi) � 0

0, θ(φi) > 0.
(4.2)

In order to find the optimal proportional gain G1,opt with which maximum
suppression can be obtained, for each value of ε, a set of measurements with various
G1 was performed. G1 was increased in steps from 0 until it exceeds G1,opt . Normally,
in order to achieve efficient increments of G to reach G1,opt , the increments were set
differently for different ε. Therefore, when drawing the bifurcation curves for constant
values of G1 as shown later, the data needed to linearly interpolated to compute the
amplitudes in between the measured points. Between the measurements with different
G1, we let the system rest for a while so that the oscillation reverted back to the
original state. Figure 8 shows how the amplitude of oscillation varies for different G1

for three values of ε. As the gain is increased from zero, the root means square of the
oscillation (θ(φ1)2 + θ(φ2)2)

1/2 is suppressed. The scheme starts to lose control as G1

exceeds G1,opt .

4.2. Small ε

When ε is small, the control shows an excellent performance with complete
suppression of the oscillation achieved. Figure 9 shows the time history of the
dimensionless temperature signal from one of the sensors, θ(φ = 0), and corresponding
power output, Q(φ = π). Here, ε = 0.18 and G1 = G1,opt = 2. On turning on the control,
the oscillation is damped completely within several periods. The system with the
control loop shows a linear behaviour, where the exponential decay of the oscillation
indicates that only the unstable mode is stabilized while other modes are unaffected.
The heater output initially overshoots but then drops down to less than 1 mW as the
control becomes successful. The effect of the control can be confirmed by the spectrum
analysis shown in figure 10. It can be observed that all the frequency components
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Figure 10. The power spectrum density of the non-dimensional temperature signal without
control (solid line) and with control (dashed line) for ε =0.18.

have disappeared. Similar results can be obtained for the other sensor/heater pair;
thus global stabilization of the oscillation is achieved.

The mean value of the temperature was recorded simultaneously, and no severe
variation in the mean value was detected before, during, and after applying the
control, which indicates that the heat delivered to the fluid during the control is
sufficiently small to not alter the base state appreciably. This clearly shows that
the mechanism for the stabilization of the oscillation flow is that the temperature
fluctuation on the surface is counteracted without influencing the base flow. It can
be seen from figure 9 that the magnitudes of the upper and lower bounds of the
uncontrolled oscillations are slightly different. This is due to the harmonic waves
superposed on the fundamental ones deforming the sinusoidal wave, and the mean
value of θ is still 0.
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and θ (φ2, t) (b) for ε = 0.52.

One may wonder if the modification of local viscosity due to the heating plays a role
in the mechanism. The variation in local surface temperature due to control heating
should be of the same order as the amplitude of the initial temperature oscillation
whose typical value is about 0.4 ◦C. The corresponding variation in viscosity of
the liquid used in the present experiment is about 1%. As the amplitude of the
suppressed oscillation is much smaller than the initial value, the viscosity variation
should negligible and unlikely to play a role in the mechanism.

The successful global stabilization of the whole flow field can also be observed
by flow visualization. On applying the control, the mode-2 standing wave with the
elliptical particle-free area (figure 3a–c) gradually reaches a steady axisymmetric state,
as shown in figure 3(d). Radial streaks appear in the particle-free area, which implies
that the azimuthal velocity is absent.

4.3. Larger ε

On increasing ε further, the performance of the control deteriorates, even though
non-trivial attenuation of the oscillation can still be observed. Figure 11 shows the
wavelet transforms of the temperature signals, θ(φ1, t) (a) and θ(φ2, t) (b), for higher
ε (= 0.52). A Morlet wavelet was used (Goupillaud, Grossmann & Morlet 1984). The
wavelet transforms allow us to observe the time evolution of the dominant frequency
components. The contour lines indicate the energy of the disturbance. Turning on the
control at t =10 (solid line), the energy intensity gradually decreases as f2 increases
from 0.9 Hz to about 1.3 Hz at t = 15. When the control achieves a steady state, a
modulation with a period of about 4 s appears on the f2 components of both signals.
As indicated by the vertical dashed lines, the two modulations are out of phase.
This implies that the node of the oscillation is going back and forth between φ = 0
and φ = π/4 with a period of 4 s. This feature of the controlled standing wave was
also observed by flow visualization, but not so clearly since the motion of mode-2
is overshadowed by the additional mode. At this stage, it is not clear whether this
behavior is due to the nonlinear effect.
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(a) t = 0 (b) t = 0.48 s

Figure 12. Flow visualization of excited mode-1 standing wave.

In addition, on turning on the control, a new frequency component appears which
suggests the existence of a newly appearing mode. This was also observed by Shiomi &
Amberg(2002) in the annular geometry when ε exceeds a certain value. The peak
of the additional mode is about 1.05 Hz. On increasing G1 further, the new mode
becomes dominant over the original one.

4.4. The appearance of mode 1

The modification of the mode structure caused by the linear control, which limits
the performance of the method (solid lines in figure 8), can be clarified by flow
visualization. As can be seen in figure 12, on turning on the control, mode-2 oscillation
becomes a mode-1 dominating standing wave. Here, the number of lines of symmetry
is 1 as indicated by the line of symmetry (dashed lines). The solid lines denote the
node lines of the oscillation. Following the sequence of pictures (a) ↔ (b), it can be
observed that most of the dark area moves to the other side of the node line. Note
that the two pictures are mirror images of each other with respect to the node line.
For the range of ε presented in this paper, the new mode-1 oscillation always has
a standing structure. It is likely that when G1 is above a certain value, bifurcation
of mode-1 is encouraged, since the current control method causes amplification of
waves with azimuthal wavenumber of 1. For a mode-1 oscillation, the temperature
signals are out of phase for a sensor/heater pair when dφ = π, hence the oscillation
will be amplified by a negative gain. Here, since there are two sensor/heater pairs
π/4 apart from each other, the steady state is achieved when the anti-nodes of the
oscillation are placed at the mid-points of the two sensors (φ = π/8) and the two
heaters (φ = 9π/8).

The bifurcation curve of mode-1 is shown in figure 13. The amplitudes of the
mode-1 oscillation for three different values of G1 are shown with solid lines. The
range of available data is not sufficient to make a conclusive statement on whether the
bifurcation is supercritical or subcritical. For G1 = 10 and 15, the bifurcation curve
for smaller ε could not be drawn due to the limits of the tested range of parameter
sets. For G1 = 5, the bifurcation curve for larger ε is missing because A1 could not be
identified when mode-2 is dominant, and the bands of f1 and f2 overlap. Nevertheless,
it can be observed that this is not the case where the control influences only the linear
property of the system and the Hopf bifurcation is simply shifted downwards. The
control does alter the nonlinear property, which results in a dramatic increase of the
amplitude with increasing G1.
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Figure 13. Mode-1 bifurcation for various G1. Solid lines: dφ = π, dashed line: dφ = π/2.
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1/2. For dφ = π/2, mode-1 oscillation is not observed for G1 = 5 or 10.

5. Proportional control, dφ = π/2

5.1. Modified linear control

One possible way to discourage the amplification of mode-1 is to change the azimuthal
distance between the sensors and the heaters (dφ). When dφ = π, assuming the newly
appearing mode-1 to be a standing wave, the mode will oscillate with its anti-nodes
close to the sensors and heaters. Then we move the heater so that the scheme becomes

Q(φi + π/2) =

{
G1θ(φi), θ(φi) � 0

0, θ(φi) < 0.
(5.1)

With this change, instead of cancelling the temperature at a local position whose
temperature is in phase with that at the sensor position, we carry out the cancellation
at a local position whose temperature is out of phase with the sensor signal. Note
that, in this case, the sign in front of G1 needs to be changed to positive. In this way,
as long as the mode-1 oscillation is standing, the amplification of mode-1 should be
attenuated.

In the present experiment, for technical simplicity, the sensors and heaters were
positioned as shown in figure 7(b), where sensors were positioned at φ1 = 0 and
φ2 = π/4, and corresponding heaters were placed at φ = φ1 − π/2 and φ = φ2 + π/2,
respectively.

Consequently, the changes in sensor/heater positioning resulted in a significant
delay in the appearance of mode-1 compared with the case dφ = π. As can be seen in
figure 8, further increase of G1 is allowed without triggering mode-1. The considerable
delay in the mode-1 bifurcation can also be confirmed in figure 13, where mode-1
(solid lines) does not appear until G1 reaches 15, even with small amplitude. Now
complete suppression can be achieved up to ε = 0.41 where the initial oscillation has
a travelling structure. Mode transition does take place when G1 is increased further,
though, as shown later, the control suppresses the oscillation to less than 30% of the
uncontrolled value in this range of ε before the transition takes place.
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Figure 14. Mode-2 bifurcation for various G1. Dashed lines represent the linear
least-squares fit to the data.

5.2. Mode-2 bifurcation

The influence of the control in the context of bifurcation analysis is shown in
figure 14. The dashed lines denote the bifurcation curve fit to the data obtained.
The experimental results show a clear linear influence where the bifurcation curve is
shifted along the horizontal axis as G1 increases. Qualitatively similar results were
obtained for dφ = π when the mode-2 component was filtered through. On increasing
G1 to 30, the bifurcation curve falls on the horizontal axis, which means that the
mode-2 oscillation is completely suppressed. For this value of G1, however, mode-1
is amplified as can be seen in figure 13.

5.3. Frequency

As seen in figure 11, when applying the proportional control, the critical frequency
of mode-2 (f2) increases by a non-trivial amount. On increasing G1 from 0, f2

increases until G1 = G1,opt, above which the frequency saturates. The increase in f2

can be explained by the fact, based on flow visualization and the computed oscillation
amplitudes, that the flow pattern becomes more standing-wave-like as G1 is increased
and the amplitude of the oscillation is reduced. The structure of the oscillation
becomes more similar to that at onset as the system is stabilized. The frequency
saturates when the oscillation becomes a pure standing wave. In figure 6, values of f2

for G1 = G1,opt are depicted as circles for a range of ε. The solid line shows the linear
increase of f2 with control. It can be observed that the line matches f SW

2 well.

5.4. Overall performance of the proportional control

The overall performance of the proportional control is illustrated in figure 15. The
performance of the control is quantified by the suppression ratio γ (G1,opt), where γ

is the ratio of θrms with control to θrms without control. Significant attenuation of the
oscillation was obtained in the range of ε (�0.9) presented. The optimal dφ was π/2
in this range. The control showed an excellent performance when ε � 0.41 where the



208 J. Shiomi, M. Kudo, I. Ueno, H. Kawamura and G. Amberg

0

0.2

0.2 0.4 0.6 0.8
ε

0.3

0.1

γ

Figure 15. Performance of the proportional control over a range of ε. Circles: suppression
ratio γ with optimal gain G1,opt .

0

0

0.02

–0.02
0.02

–0.02

(a)

θ
(t

+
2d

t)

θ(t+dt)
–0.02

0
0.02

θ(t)

0

0

0.02

–0.02
0.02

–0.02

(b)

θ
(t

+
2d

t)

θ(t+dt)
–0.02

0
0.02

θ(t)

Figure 16. Three-dimensional return maps of the oscillation θ (φ1) in the period-doubling
regime for (a) G1 = 0 and (b) G1 = 5.4. dφ = π/2, ε =1.5, dt =0.16 s.

oscillation was suppressed down to the level of background noise. This upper limit
of ε is substantially larger then the value ε =0.08 reported by Petrov et al. (1998).
Above that point γ (Gopt) increases gradually up to 0.26 as ε approaches 0.9.

5.5. Proportional control in the period-doubling regime

The proportional control with dφ = π/2 seems to work quite well even in the strongly
nonlinear regime. To investigate how the control performs on a flow with even stronger
nonlinearity and more chaotic characteristics, we have applied the proportional control
to the oscillation with ε = 1.5. Figure 16 (a, b) depicts the three-dimensional return
map constructed from experimental time series of dimensionless temperature for
different values of G1. The delay is set to 0.16 s. Map (a) shows that the oscillation
is in a state of period doubling with period-4 cycle, the beginning of a cascade
which leads the system to chaos (May 1976). On applying the proportional control,
as shown in the map (b), the control stabilizes the orbit, which becomes periodic.
Similar stabilization was also observed from the other sensor. We could attenuate
the amplitude of the oscillation by increasing G1 even more. However, the maximum
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Figure 17. Influence of the cubic control on the bifurcation features of mode-2
for dφ = π and G1 = 0.8.

power output limit of the heater prevented us from exploring the control with
optimal G1.

6. Cubic control
The cubic term was added to the control law as

Q(φi + dφ) =

{
−G1θ(φi) − G3θ(φi)(θ(φ1)

2 + θ(φ2)
2), θ(φi) � 0

0, θ(φi) > 0.
(6.1)

Cubic control is often applied to change the characteristics of bifurcation. Specifically,
if the system shows a subcritical bifurcation, modification of the nonlinear properties
of the system may render it supercritical which is more easily controlled (Yuen &
Bau 1996). Observing the influence of the linear control scheme on the nonlinear
property of mode-1, our original motivation to add the cubic term in the control law
was to stabilize the higher-order terms of mode-1. To this end, we would need G3 to
be negative. Unfortunately, this may be problematic since it will amplify mode-2 and
change its bifurcation from supercritical to subcritical.

However, there could still be benefits from applying cubic control with positive
G3. Figure 17 depicts the change in bifurcation curve with increasing G3 and
constant G1 (= 0.8). As would be expected, the cubic control decreases the slope
of the bifurcation curve but does not affect the onset. Here dφ = π, hence the mode
transition should take place earlier than for dφ = π/2. However, in the range of data
presented, the bifurcation of mode-1 could not be observed although significantly
more suppression is obtained compared to the case with only proportional control.
This is understandable since the cubic control has a small influence on the linear
properties of the system, hence it does not shift the onset of mode-1 bifurcation.
Still, the limited influence on the linear properties does trigger mode-1 when G3

exceeds a certain value beyond the range presented in figure 17. The cubic control
also destabilizes the cubic properties of the mode-1 oscillation. It has been observed
that, once mode-1 is triggered by increasing G1, the onset amplitude of mode-1 is
considerably increased as G3 increases.
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7. Conclusions
We have performed linear control on oscillatory thermocapillary convection in a

half-zone. Configurations with different distances between two sensor/heater pairs
were examined. When dφ = π, the control was found to amplify mode-1 oscillation.
This could be remedied by modifying the probe configuration so that the amplification
is minimized. The proportional control shows an excellent performance in the weakly
nonlinear regime. Up to ε = 0.42, complete suppression of oscillations could be
achieved. The linear scheme gradually loses control as the nonlinearity becomes
stronger. However it should be noted that the linear control scheme achieves a
significant attenuation up to fairly high ε. At least up to ε ∼ 0.9, the control suppresses
the oscillation down to less than 30% of the initial value.

It should be pointed out that the control method with dφ = π/2 is not able to
directly suppress the harmonic modes since they are in phase at paired sensors and
heaters, whereas the scheme is capable of suppressing the harmonics when dφ = π as
long as the temperature signals at two locations π/4 apart are in phase. For dφ = π/2,
there is a risk that the harmonics are actually amplified. In spite of this difference, the
two control methods seem to act on the mode-2 oscillation in quantitatively the same
manner for the range of ε presented. This suggests that, even with a considerable
amount of energy in harmonic modes, the performance of control relies mainly on
suppressing the fundamental mode.

At high ε (= 1.5), where the period-4 cycle is observed, the control stabilizes the
flow to a periodic state. Unfortunately, the present experimental setup did not allow
us to raise ε to the chaotic regime without overheating the bridge supports. Since it
is known that a chaotic state for high Pr can easily be achieved for example in an
experiment performed in a freezer (Ueno et al. 2003), this should be possible in the
near future.

It was also shown that cubic control can alter the nonlinear properties of the
system in a beneficial way. Since the cubic term has little effect on the linear pro-
perties, it does not promote the bifurcation of mode-1 as much as the linear control
does. Choosing the right combination of G1 and G3, it should be possible to achieve
the best suppression of the mode-2 oscillation before triggering mode-1.
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